電機驅動是利用電動機產生的力或力矩,直接或經過減速機構驅動工業(yè)機械手,以獲得所需的位置、速度、加速度。電機驅動是技術較為成熟、應用廣泛的一種驅動方式,為大多
數(shù)靈巧手所采用。
電機驅動的靈巧手的驅動形式可以分為旋轉型驅動和直線型驅動。
采用旋轉型驅動的靈巧手以 Stanford/JPL 手為代表,其驅動系統(tǒng)由直流電機和齒輪
減速機構組成,因而體積較大,驅動系統(tǒng)只能放在手掌部位,通過腱進行手指關節(jié)的
遠距離驅動。
近年來,微型驅動器和減速器的發(fā)展為手指驅動系統(tǒng)的微型化和集成化創(chuàng)造了條件。
例如,德國的 DLR 靈巧手采用直線型驅動器來驅動關節(jié),其直線驅動器將旋轉電機、
旋轉直線轉換結構和減速機都集成在靈巧手內部。該靈巧手采用了模塊化的設計思想,
由四根完全相同的手指組成,每根手指有 4 個關節(jié),3 個自由度,末端的 2 個關節(jié)仿
照人手設計成 1:1 的耦合運動。
混合置式靈巧手將一部分驅動器放在手臂,既保證了驅動力,也降低了靈巧手本體的體積, 使得靈巧手更加擬人化
驅動器內置式靈巧手各關節(jié)具有較好的剛性,更利于傳感器的直接測量,且模塊化設計利于更換維護;整手尺寸較大,關節(jié)靈活度下降
靈巧手的外觀設計更加擬人化,手指本體更加纖細;可以采用更大的驅動電機,從而增大手指的輸出力;驅動器與手本體之間距離遠增加了控制器設計的難度
第一階段是從 20 世紀 70 年代—20 世紀 90 年代,典型代表是日本的 Okada、美國的 Stanford/JPL 和 Utah/MIT;第二階段是從 20 世紀 90 年代到 2010 年
靈巧手是機器人操作和動作執(zhí)行的末端工具,滿足兩個條件:指關節(jié)運動時能使物體產生任意運動,指關節(jié)固定時能完全限制物體的運動,定義靈巧手是指數(shù)≥3,自由度≥9 的末端執(zhí)行器
特斯拉公布了 6 種規(guī)格的執(zhí)行器,旋轉執(zhí)行器采用諧波減速器+電機的方案,線性執(zhí)行器采用絲杠+電機的方案,對于手掌關節(jié),其采用了空心杯電機+蝸輪蝸桿的結構
人形機器人有更強的柔性化水平,更好的環(huán)境感知能力和判斷能力,首要需要解決的問題是如何實現(xiàn)像人一樣去運動,能夠兼顧可靠性
28個執(zhí)行器分別為肩關節(jié)(單側三自由度旋轉關節(jié))6個,肘關節(jié)(單側直線關節(jié))2個,腕部關節(jié)(單側2個直線+1個旋轉)6個,腰部(二自由度旋轉關節(jié))2個
無框力矩電機沒有外殼,可以提供更大的設備空 間,中間是中空形式的,便于走線;在設計中,可以使整個機器體積更小,因此可以提供更大的功率密度比
型伺服驅動器有三種類型,分別為常規(guī)伺服驅動器,SEA 伺服驅動器,本體伺服驅動器;主要由力矩電機,諧波減速器,電機編碼器,輸出編碼器,驅動板,制動器組成
控制系統(tǒng)根據(jù)指令及傳感信息,向驅動系統(tǒng)發(fā)出指令,控制其完成規(guī)定的運動,控制系統(tǒng)主要由控制器(硬件)和控制算法(軟件)組成
電機驅動控制手段先進,速度反饋容易,絕大部分機器人使用電機驅動;液壓驅動體積小重量輕,是機器人Atlas使用的驅動方案;氣動驅動安全性高,應用于仿生機器人等